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Abstract:  At room temperature, the presence of hydrogen and catalytic amounts of Pd/C induced the 
formation of 1,3-oxazolidines from nitriles and 1,2-amino alcohols. The subsequent reductive cleavage 
of the NC-O bond of lhese heterocycles occurred under the same conditions. Thus, this methodology 
provides a new one-pot N-alkylation of 1,2-amino alcohols using nitriles as reagents with yields up to 
98%. © 1997 Elsevier Science Ltd. 

In the course of studies on the synthesis of optically active ketones in the presence of palladium on 

charcoal, hydrogen and (-)-ephedrine (1 a), 1,2 we have isolated small amounts of the 1,3-oxazolidine 2a  3 when 

i) acetonitrile was used as solvent and it) hydrogenation conditions were maintained for a long time. Obviously, 

2a  was generated from the reaction between l a  and acetonitrile mediated by the heterogeneous palladium- 

catalyzed hydrogenation procedure (Eq. 1). To the best of our knowledge, such a process has never been 

reported. 

Ph~ ,~ jO  
P h ~ O H  + MeCN Pd/C(cat.)R [ ) , ,~Me (1) 

H 2 (1 atm.), _.T Mef,,-~N 
Me NHMe \ 

la 2a Me 

Oxazolidines are useful synthetic intermediates; they are usually obtained from the condensation of 1,2- 

amino alcohols with either aldehydes or their corresponding acetals. 4,5 This urges us to study the formation of 

oxazolidines under conditions in which a aitrile plays formally the role of an aldehyde. 

In preliminary experiments, solutions of (-)-ephedrine in acetonitdle containing catalytic quantities of 

Pd/C 6 were stirred at room temperature under a static hydrogen atmosphere or with a continuous bubbling (1-50 

ml/min) of hydrogen into the mixture. Thus, we obtained 2a 3,7 and also 3a 8 which corresponds to the N- 

ethylation of l a  (Eq. 2). The most reproducible conditions were obtained when using a rubber balloon filled 

with hydrogen. As exemplified by results summarized in Table 1, the conversion of l a  increased with the 

amount of catalyst (runs l and 2). It also appeared clearly that 3a  was produced by cleavage of the NC-O bond 
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of 2a since its relative amount increased with time while that of 2a dropped (runs 2 to 4). l0 In agreement, a 

solution of 2a in MeOH (0.12 M) containing Pd/C (0.012 equiv.) stirred under hydrogen (1 arm.) for 24 h 

provided 3a with 95% yield. 

Table 1. Condensation of (-)-ephedrine with acetonitrile, a 

Run Pd/C equiv. Time la  / 2a / 3a Ratio b 

1 0.004 24h 21/58/21  

2 0.012 4 h 37 / 50 / 13 

3 0.012 7 h 0 / 3 5 / 6 5  

4 0.012 17 h 0 /15  / 85 
aAt room temperature, using l a  (0.6 mmol), MeCN (6 ml), Pd/C and a balloon of hydrogen, bDetermined by 
1H NMR analysis. 9 The figure "0" means that this compound was not detected. 

With butyronitrile (4b)instead of acetonitrile, the procedure afforded oxazolidine 2b ( la  / 2b ratio: 75 / 

25 in 7 h9). In keeping acetonitrile as both solvent and reagent, the exchange of l a  for (-)-norephedrine (1¢) 

provided oxazolidine 2e I 1 and the alkylated adduct 3e 8 (1 c / 2e / 3e ratios: 56 / 32 / 12 in 7 h, 46 / 27 / 27 in 

17 h9). 

Ph ~ , ¢  OH +R2CN Pd/C (cat.)_ Ph~,~ ~.O¢¢~N ~ R 2  P h ~ O H  
+ (2) 

H 2 (1-12 bar) Me 
Me" "NHR~ RT ~R l Me NRICH2 R2 

1 4 2 3 

a: RI= Me a: R2=- Me a: RI= Me, R2= Me 

e: RI= H b: R 2=- n-Pr b: R 1= Me, R 2= n-Pr 

d: R 2=- Et e: R 1= H, R2= Me 

e: R2= (CH2)2OH d: RI= Me, R 2= Et 

f: R 2= CH2Ph e: RI= Me, R 2= (CH2)2OH 

g: R2=- i-Pr f: RI= Me, R 2=- CH2Ph 

g: RI= Me, R 2=- i-Pr 

With the aim of using lower amounts of the cyano compound, we examined the reaction of l a  with 4a in 

various solvents. The condensation and the accompanying cleavage reaction were indeed obtained (Table 2). 

Nevertheless, their efficiencies were affected by the nature of solvents (runs I, 4, 6 and 7) and the amounts of 
acetouitrile (runs 2 and 3). The complete transformation of l a  was obtained in 20 to 24 h when using 10 equiv. 

of 4a in methanol or toluene (runs 2 and 5). A particularly clean reaction was provided in methanol: 3a was thus 

isolated with 95% yield (run 2). 

Therefore, the domino reaction t2 described above composes a highly effective one-pot N-alkylation of 

1,2-amino alcohols. Previously, such a reaction has been carried out either by alkylation with organic halides 8.13 

or through two steps: firstly, either a condensation with aldehydes (or their corresponding acetals) 4 or a N- 
acylationS,t 4 and secondly, a reduction. 4.15 



7189 

Table 2. Influence of the nature of the solvent on the condensation of (-)-ephedrine with acetonitrile, a 

Run Solvent Time I a / 2a / 3a Ratio b 

1 MeOH 7 h 33 / 24/43 

2 MeOH 24h 0 / 0 / 1 0 0  

3 MeOH c 24h 1 1 / 6 / 8 4  

4 PhMe 7h  8 0 / 2 0 / 0  

5 PhMe 20 h 0 / 61 / 39 

6 EtOEt 7 h 85 / 15 / 0 

7 AcOEt 7 h 88 / 5 / 7 
nat room temperature, using l a  (0.6 mmol), 4a (0.32 ml, 10 equiv.), Pd/C (30 rag, 0.012 equiv.), solvent (5 
ml) and a balloon of hydrogen, has in Table 1. CI'he quantity of MeCN was reduced to 5 equiv. 

In methanol, the reaction with butyronitfile (4b), propionitrile (4d) and 3-hydroxypropionitrile (4e) was 

also observed under the present hydrogenation conditions (Table 3, runs 1 to 5). Thus, N-alkylated amino 

alcohols 3b, 3d and 3e 16 have been isolated with fair to high chemical yields (runs 2, 3 and 517). In contrast, 

benzylcyanide (4 f) and isopropyicyanide (4 g) were reluctant to react under these conditions even when the 

reactions were carried out at 80"C (runs 6 and 7). Nevertheless, the reactivity of 4 f and 4 g was improved when 

the reaction was performed in a stainless steel bomb under pressure of hydrogen (Table 3, runs 8 to 11). Then, 

the crude 2g / 3g mixture obtained in run 11 was dissolved in methanol; after stirring this solution for 24 h 

under hydrogen (balloon) in presence of catalytic amounts of Pd/C, 3 gl 6 was isolated with 79% yield. 

Table 3. Condensation of (-)-ephedrine with various nitriles in methanol, a 

Run R2CN (equiv.) Hydro[en t*C Time l a  / 2 / 3 Ratio b 3: Yield %c 

1 4b (10) balloon d RT 48 h 32 / 16 / 52 e 

2 4b (10) balloon d RT 90 h 0 / 0 / 100 3b: 92 

3 4d (5) balloon RT 24 h 0 / 0 / 100 3d: 98 

4 4e (5) balloon RT 24 h 39 / 27 / 34 e 

5 4e (5) balloon d RT 90 h 0 / 0 / 100 3e: 55 

6 4 f (5) balloon 80 15 h 100 / 0 / 0 0 

7 4g (10) balloon 80 15 h 98 / 2 / 0 0 

8 4f(5)  12bar RT 21 h 8 8 / 1 2 / 0  e 

9 4f(5)  12 bar RT 93 h 29 /30 /41  e 

10 4g (10) 12bar RT 15h 8 0 / 2 0 / 0  e 

11 4g (10) 12bar RT 96h 0 / 4 0 / 6 0  3g: see text 

aUsing l a  (0.6 retool), 4 (5 or 10 equiv.), Pd/C (30 rag, 0.012 equiv.), methanol (5 ml) under hydrogen (1 or 
12 bar). bAs in Table 1. qsolated N-alkylated amino alcohol, d/he rubber balloon was exchanged for a new one 
filled with hydrogen after each 24 h. eNot isolated. 
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